***Ex: 9.5 Consider a disk with a sector size of 512 bytes, 2000 tracks per surface, 50 sectors per track, five double-sided platters, and average seek time of 10 msec.

Question: Consider again the disk specifications from Ex. 9.5 (see above), and suppose that a block size of 1024 bytes is chosen. Suppose that a file containing 100,000 records of 100 bytes each is to be stored on such a disk and that no record is allowed to span two blocks.

a) How many records fit onto a block?

b) How many blocks are required to store the entire file? If the file is arranged sequentially on the disk, how many surfaces are needed?

c) How many records of 100 bytes each can be stored using this disk?

d) If pages are stored sequentially on disk, with page 1 on block 1 of track 1, what page is stored on block 1 of track 1 on the next disk surface? How would your answer change if the disk were capable of reading and writing from all heads in parallel?

e) What time is required to read a file containing 100,000 records of 100 bytes each sequentially? Again, how would your answer change if the disk were capable of reading/writing from all heads in parallel (and the data was arranged optimally)?

f) What is the time required to read a file containing 100,000 records of 100 bytes each in a random order? To read a record, the block containing the record has to be fetched from disk. Assume that each block request incurs the average seek time and rotational delay.

Solved
Show answers

Ask an AI advisor a question